Packet H: Power Series and Convergence Sets (Section 9.5)

A power series in \boldsymbol{x} has the form:

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

We call the set on which a power series converges its convergence set.

The convergence set for a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is always an interval of one of the following three types.
i) The single point $x=0$.
ii) An interval $(-R, R)$, plus possibly one or both endpoints.
iii) The whole real number line $(-\infty, \infty)$.

The radius of convergence is $0, R$, and ∞, respectively.

Theorem:

A power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely on the interior of its interval of convergence.

A power series in $\boldsymbol{x}-\boldsymbol{a}$ has the form:

$$
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+a_{3}(x-a)^{3}+\cdots
$$

The convergence set for a power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ is always an interval of one of the following three types.
i) The single point $x=a$.
ii) An interval $(a-R, a+R)$, plus possibly one or both endpoints.
iii) The whole real number line $(-\infty, \infty)$.

Find the convergence set of the given power series. Hint: First find a formula for the nth term, then use the Absolute Ratio Test.

1. $\frac{x}{1 \cdot 2}-\frac{x^{2}}{2 \cdot 3}+\frac{x^{3}}{3 \cdot 4}-\frac{x^{4}}{4 \cdot 5}+\frac{x^{5}}{5 \cdot 6}-\cdots \quad 2 . \quad x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots$
2. $x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots \quad 1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{4}-\cdots$
3. $1-\frac{x}{1 \cdot 3}+\frac{x^{2}}{2 \cdot 4}-\frac{x^{3}}{3 \cdot 5}+\frac{x^{4}}{4 \cdot 6}-\cdots$
4. $1-\frac{x}{2}+\frac{x^{2}}{2^{2}}-\frac{x^{3}}{2^{3}}+\frac{x^{4}}{2^{4}}-\cdots$
5. $1+2 x+\frac{2^{2} x^{2}}{2!}+\frac{2^{3} x^{3}}{3!}+\frac{2^{4} x^{4}}{4!}+\cdots$
6. $\quad \frac{(x-1)}{1}+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}+\frac{(x-1)^{4}}{4}+\cdots$
7. $1+\frac{(x+1)}{2}+\frac{(x+1)^{2}}{2^{2}}+\frac{(x+1)^{3}}{2^{3}}+\cdots$
8. $\frac{(x+5)}{1 \cdot 2}+\frac{(x+5)^{2}}{2 \cdot 3}+\frac{(x+5)^{3}}{3 \cdot 4}+\frac{(x+5)^{4}}{4 \cdot 5}+\cdots$
