Packet D: Infinite Series (corresponds to Section 9.1)

I. Geometric Series. A series of the form $\sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + ar^3 + \cdots$ where $a \neq 0$ is called a **geometric series**. This series converges with sum S = a/(1-r) if |r| < 1, but diverges if $|r| \ge 1$.

Indicate whether the given series converges or diverges. If it converges, find its sum. *Hint*: it may help you to write out the first few terms of the series.

1.	$\sum_{k=0}^{\infty} \left(\frac{1}{5}\right)^{k}$
	$k=1 \setminus 3$

$$2. \qquad \sum_{k=0}^{\infty} \left[2\left(\frac{1}{3}\right)^k + 3\left(\frac{1}{6}\right)^k \right]$$

$$3. \qquad \sum_{k=1}^{\infty} \frac{k-3}{k}$$

$$4. \qquad \sum_{k=1}^{\infty} \left(\frac{4}{3}\right)^{k}$$

$5. \qquad \sum_{k=1}^{\infty} \frac{k!}{10^k}$	$6. \qquad \sum_{k=3}^{\infty} \left(\frac{e}{\pi}\right)^{k-1}$
7. $\sum_{k=1}^{\infty} \left(\frac{3}{(k+1)^2} - \frac{3}{k^2} \right)$	$8. \qquad \sum_{k=4}^{\infty} \frac{4}{k-3}$

COLLAPSING SERIES. A geometric series is one of the few series where we can actually calculate S_n ; a collapsing series is another.

Example. Show that the following series converges and find its sum.

$$\sum_{k=1}^{\infty} \left(\frac{1}{(k+2)(k+3)} \right)$$

Solution. Use a partial fraction decomposition to write

$$\frac{1}{(k+2)(k+3)} = \frac{1}{k+2} - \frac{1}{k+3}$$

Then,

$$S_n = \sum_{k=1}^n \left(\frac{1}{k+2} - \frac{1}{k+3} \right) = \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \dots + \left(\frac{1}{n+2} - \frac{1}{n+3} \right)$$
$$= \frac{1}{3} - \frac{1}{n+3}$$

Therefore,

$$\lim_{n\to\infty} S_n = \frac{1}{3}$$

Use the above example to determine whether the given series converges or diverges. If it converges, find its sum.

$9. \qquad \sum_{k=2}^{\infty} \left(\frac{2}{k(k-1)} \right)$	10. $\sum_{k=1}^{\infty} \left(\frac{4}{(4k-3)(4k+1)} \right)$

11. $\sum_{k=1}^{\infty} \left(\frac{6}{(2k-1)(2k+1)} \right)$	12. $\sum_{k=1}^{\infty} \left(\frac{40k}{(2k-1)^2 (2k+1)^2} \right)$
$13. \qquad \sum_{k=1}^{\infty} \left(\frac{2k+1}{k^2(k+1)^2} \right)$	$14. \qquad \sum_{k=1}^{\infty} \left(\frac{1}{\ln(k+2)} - \frac{1}{\ln(k+1)} \right)$
15. $\sum_{k=1}^{\infty} \left(\tan^{-1}(k) - \tan^{-1}(k+1) \right)$	16. $\sum_{k=1}^{\infty} \left(\frac{2^{2k}}{(2k)!} - \frac{2^{2k+1}}{(2k+1)!} \right)$