Packet A: Maclaurin \& Taylor Polynomials (corresponds to Section 9.2)

Maclaurin Series at $c=0: f(x) \approx f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}+\ldots=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}$
Find the Maclaurin Polynomials of order 4 for $f(x)$ and use it to approximate $f(0.25)$.

1. $f(x)=e^{2 x}$
2. $f(x)=\sin 2 x$
3. $f(x)=\ln (x+1)$
4. $f(x)=\tan ^{-1} x$

Taylor Series at $x=c$:

$$
f(x) \approx f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\ldots=\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

Find the Taylor Polynomials of order 3 centered at the given points.
5. $\quad f(x)=e^{x} ; c=2$
6. $f(x)=\tan x ; c=\frac{\pi}{4}$
7. $f(x)=\tan ^{-1} x ; c=1$
8. Find the Taylor Polynomial of order 3 centered at $c=2$ for $f(x)=x^{3}-2 x^{2}+3 x+5$ and show that it is an exact representation of $f(x)$.
9. Find the Maclaurin Polynomial of order n for $f(x)=1 /(1-x)$. Then use it with $n=4$ to approximate each of the following.
(a) $f(0.1)$
(b) $f(0.5)$
(c) $f(0.9)$
(d) $f(2)$

How does this example show you that the Maclaurin series can be exceedingly poor if x is far from zero?

