Math 604 – AP Calculus BC

Name_____

Packet A: Maclaurin & Taylor Polynomials (corresponds to Section 9.2)

Maclaurin Series at c = 0: $f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}x^k$

Find the Maclaurin Polynomials of order 4 for f(x) and use it to approximate f(0.25).

1. $f(x) = e^{2x}$

2. $f(x) = \sin 2x$

3. $f(x) = \ln(x+1)$

4. $f(x) = \tan^{-1} x$

Taylor Series at x = c:

$$f(x) \approx f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^k$$

Find the Taylor Polynomials of order 3 centered at the given points.

5.
$$f(x) = e^x; c = 2$$

6.
$$f(x) = \tan x$$
; $c = \frac{\pi}{4}$

7.
$$f(x) = \tan^{-1} x$$
; $c = 1$

8. Find the Taylor Polynomial of order 3 centered at c = 2 for $f(x) = x^3 - 2x^2 + 3x + 5$ and show that it is an exact representation of f(x).

- 9. Find the Maclaurin Polynomial of order n for f(x) = 1/(1-x). Then use it with n = 4 to approximate each of the following.
 - (a) f(0.1) (b) f(0.5) (c) f(0.9) (d) f(2)

How does this example show you that the Maclaurin series can be exceedingly poor if x is far from zero?